Betonbauteile mit photokatalytisch aktivierten Oberflächen – Eine Chance zur Reduzierung des NOx-Gehaltes in Städten:

Untersuchungsergebnisse und Modellierungsansätze

Prof. Dr. Michael Bruse, Johannes Gutenberg-Universität Mainz Dr. Klaus Droll, Dyckerhoff AG, Wilhelm-Dyckerhoff-Institut

> Kolloquium "Luftqualität an Straßen" 30./ 31. März 2011, Bergisch Gladbach

Agenda

Einführung

- Experimentelle Untersuchungen
- Numerische Modellierung mit ENVI-met
- Exemplarische Simulationsrechnungen
- Zusammenfassung und Ausblick

Einführung

- Jährlich werden mehr als 200 Mio. m² Betonoberflächen erstellt
- Statische- funktionelle Eigenschaften des Betons / Betonoberflächen
 - Statische Aufgaben (Festigkeit)
 - Wärmeschutz / Schallschutz
 - Ästetik (Sichtbeton)
 - Zusätzlich: Umwelt-/Klimaschutz
- Wirkungsweise der Photokatalyse
 - Erzeugung von oxidierenden Clustern auf Photokatalysatoroberflächen (Halbleiter)
 - Abbau von Luftschadstoffen z.B. NO_x
 - Abbau von Kohlenwasserstoffen
 - Easy-to-clean-Effekte (Ultrahydrophobie)
 - Hemmung von biologischem Bewuchs

Einführung

 Verschärfung der NO_x-Grenzwerte durch Richtlinie EC 2008/50/EG vom 21.05.2008 über Luftqualität und saubere Luft für Europa

• Möglichkeiten:

- Reduktion der Emissionen z.B. Verkehr
- Passive NO_x-reduzierende Maßnahmen z.B. aktive Baustoffoberflächen zum Abbau von NO_x

Nachweise der nachhaltigen Wirkung der Photokatalyse an Baustoffoberflächen

- Musterlegungen z.B. Canyon-Versuche (Nachteil: sehr stark schwankende Ergebnisse – Ergebnisse hängen vom Mikroklima in den Canyons ab: sehr gute Tageseinzelwerte bis keine Wirkung)
- Simulationsberechnungen mit Modellierungsansätzen, die z.B. für vergleichbare Stadtklima-Simulationen mit Erfolg eingesetzt werden z.B. Feinstaub-, Ozonverteilung - aber: Neue Problematik = Oberflächenreaktion Photokatalyse !
- Exemplarische Untersuchung des Abbaus von NO

Agenda

Einführung

- Experimentelle Untersuchungen
- Numerische Modellierung mit ENVI-met
- Exemplarische Simulationsrechnungen
- Zusammenfassung und Ausblick

Experimentelle Untersuchungen: Schema des Versuchsaufbaus

Experimentelle Untersuchungen: Versuchsreaktor (mod. UNI 11 247 – Versuchsablauf)

Experimentelle Untersuchungen: Untersuchungsbereich

Material:

450 g Zement bzw. mit **3% TiO₂-Photokatalysator** modifizierter Zement 1350 g Normsand 225 g Wasser

Versuchsparameter:

Isothermen Versuchsserie $T = 20^{\circ}C$ NO-Konzentration in der einfließenden Luft C (in)0,125 bis 1,0 ppmVLuftgeschwindigkeit Fluss:1 bis 3 l/minRel. Luftfeuchte rF30 bis 70%UV-A-Strahlungsintensität Q2,9 bis 10 W/m²Photokatalytisch aktive Baustofffläche0 bis 200 cm²

Experimentelle Untersuchungen: Untersuchungsergebnisse

Versuchsparameter				Ergebnisse		Umrechnungen			
Fluss	C (in)	rf	Q	Fläche	C (out)	RC	C (in)	C (out)	J ^{NOx} act
l/min	ppmV	%	W/m²	cm²	ppmV		µg/m³	µg/m³	μg/(s*m²)
Test: Verä	nderte NO-l	Konzentrati	on						
1,5	0,125	50	10,0	50	0,031	0,753	153,37	37,94	0,5771
1,5	0,250	50	10,0	50	0,097	0,610	306,75	119,54	0,9360
1,5	0,500	50	10,0	50	0,282	0,435	613,50	346,50	1,3350
1,5	1,000	50	10,0	50	0,699	0,301	1226,99	857,55	1,8472
Test: Veränderter Gasstrom									
1,0	0,500	50	10,0	50	0,215	0,570	613,50	263,93	1,1652
1,5	0,500	50	10,0	50	0,275	0,449	613,50	337,91	1,3779
2,0	0,500	50	10,0	50	0,319	0,361	613,50	391,90	1,4773
3,0	0,500	50	10,0	50	0,379	0,242	613,50	465,09	1,4840
Test: Veränderte relative Luftfeuche									
1,5	0,500	30	10,0	50	0,208	0,584	613,50	255,03	1,7923
1,5	0,500	50	10,0	50	0,282	0,435	613,50	346,50	1,3350
1,5	0,500	70	10,0	50	0,325	0,351	613,50	398, 16	1,0767
Test: Verä	nderte Stra	hlungsinter	nsität						
1,5	0,500	50	10,0	50	0,286	0,428	613,50	350,67	1,3141
1,5	0,500	50	6,3	50	0,322	0,356	613,50	395,03	1,0923
1,5	0,500	50	2,9	50	0,381	0,238	613,50	467,55	0,7298
Test: Verä	nderte phot	tokatalytisc	h aktive Flä	iche					
1,5	0,500	50	10,0	200	0,080	0,840	613,50	97,91	0,6445
1,5	0,500	50	10,0	150	0,140	0,720	613,50	172,09	0,7357
1,5	0,500	50	10,0	100	0,210	0,580	613,50	257,67	0,8896
1,5	0,500	50	10,0	50	0,282	0,435	613,50	346,50	1,3350

Agenda

Einführung

- Experimentelle Untersuchungen
- Numerische Modellierung mit ENVI-met
- Exemplarische Simulationsrechnungen
- Zusammenfassung und Ausblick

Numerische Simulation

Einbettung in das Mikroklimamodell ENVI-met

- Kurzportrait ENVI-met
- Implementierung in ENVI-met

Bestimmung der Umwandlungsrate

- Chemische Modellierung
- Empirische Modellierung
- Beispielergebnisse

Kurzportrait ENVI-met

Charakterisierung:

- Hochauflösendes prognostisches 3D-Mikroklimamodell
- Typische Skalenauflösung: 1 5 m im Raum, 1 5 s in der Zeit
- Üblicher Rechenzyklus: 24 h
- Materialeigenschaften für jede Zellfläche individuell festlegbar

Kurzportrait ENVI-met

Prognosevariablen:

- Windfeld, Temperatur, Feuchte, Turbulenz (TKE)
- Kurz- und langwellige Strahlungsflüsse an jedem Rechenpunkt
- Temperatur und Feuchte aller Oberflächen

Kurzportrait ENVI-met

Prognosevariablen:

- Ausbreitung passiver Luftbeimengungen
- Ausbreitung von Stickoxiden mit aktiver Chemie (NO NO2 O3)

Implementierung der photokatalytischen Umwandlung in ENVI-met

Verbindung mit der prognostischen Ausbreitungsgleichung über zusätzliche Senkterme

$$\begin{array}{ll} \displaystyle \frac{\partial \chi}{\partial t} + u_i \frac{\partial \chi}{\partial x_i} & = & \displaystyle \frac{\partial}{\partial x_i} \left(K_\chi \frac{\partial \chi}{\partial x_i} \right) \\ & & + Q_\chi(x,y,z) - S_\chi(x,y,z) + C_\chi(x,y,z) \end{array}$$

Q: Quelle der Luftbeimengung X

S: Senke der Luftbeimengung X

C: Quelle / Senke von X durch chemische Umwandlung

Implementierung der photokatalytischen Umwandlung in ENVI-met

Formale Bestimmung des Senkterms (übereinstimmende Einheiten vorausgesetzt):

$$S_{\chi}(x,y,$$

$$(x, y, z) = J_{act}^{NO_x} \cdot \frac{PSA(x, y, z)}{\Delta x \Delta y \Delta z(x, y, z)}$$

Photokatalytische Umwandlung an der Oberfläche bezogen auf m² (zu bestimmen)

PSA(x, y, z)
$\overline{\Delta x \Delta y \Delta z(x, y, z)}$

Photokatalytische Oberfläche PSA im Verhältnis zum Gitterzellenvolumen

Implementierung der photokatalytischen Umwandlung in ENVI-met

Problem:

Korrekte Bestimmung der aktuellen photokatalytischen Umwandlung

Zwei Ansätze sind grundsätzlich möglich:

- (a) Chemische Modellierung
- (b) Empirische Bestimmung

Annahme:

Die Umwandlung wird entweder durch den atmosphärischen NO_x Zufluss oder durch die chemische Umwandlungsgeschwindigkeit der Fläche limitiert:

$$J_{act}^{NO_x} = \min\left(J_{atm}^{NO_x}, J_{chem}^{NO_x}\right)$$

Atmosphärischer NO_x Zufluss:

$$J_{atm}^{NO} = \frac{1}{r_a + r_b} c_{NO}$$

 r_a , r_b : Transferwiderstände an der Oberfläche c_{NO} : lokale Konzentration von NO_x

Chemische Umwandlungsgeschwindigkeit:

Nach dem Langmuir-Hinshelwood Reaktionsmodell:

$$J_{chem}^{NO} = R_{NO}$$

$$R_{NO} = \frac{k_{NO} \cdot K_{NO} \cdot c_{NO}}{1 + K_{H_2O} \cdot c_{H_2O} + K_{NO} \cdot c_{NO} + \sum_i K_i C_i} I_{kw}$$

K_x: Adsorptionskonstante von Stoff X

 k_x : Geschwindigkeitskonstante der Oxidationsreaktion X I_{kw} : verfügbarer Photonenfluss an der Oberfläche

Problem:

- Die chemische Modellierung benötigt eine große Zahl empirisch zu bestimmender Größen (vor allem Adsorptionskonstante K und Geschwindigkeitskonstante k).
- Die Bestimmung ist aufwändig und beinhaltet zahlreiche Unsicherheiten.

(voll) Empirische Modellierung

Bestimmung der Flussrate im Reaktor über systematische Experimente:

$$J_{act}^{NOx} = (C_{in} - C_{out}) \cdot \frac{M(NO)}{V_0} \cdot F \cdot \frac{1}{A}$$

- *C_{in}* : *NO_x* Konzentration einströmende Luft
- Cout: NOx Konzentration ausströmende Luft
- V_0 : Volumenstrom
- A : aktive Oberfläche
- M : Molmasse NOx

Die empirische Depositionsgeschwindigkeit ist dann:

$$v_d = \frac{J_{act}^{NOx}}{\overline{C}} = \frac{1}{r_{a,chem}}$$
 oder $J_{act}^{NOx} = v_d \cdot C$

Parametrisierung der Labormessungen

Veränderliche Größen im Laborexperiment:

- NO_x Ausgangskonzentration (0.125, 0.250, 0.500 und 1.000 ppm)
- Volumenstrom (1.0, 1.5, 2,0 und 3.0 l/min)
- Relative Feuchte (30, 50 und 70%)
- kurzwellige Strahlung (10.0, 6.3 und 2,9 W/m² UV-A)

Gemeinsamer Referenzpunkt wurde in allen Experimenten gemessen und ergibt

die Referenz-Depositionsgeschwindigkeit:

v_{d,0}= 0,28 cm/s

Skalierung der Referenz-Depositionsgeschwindigkeit in Abhängigkeit von den im Modell berechneten Parametern $f_1...f_n$:

$$v_d = f_1 \cdot f_2 \cdot f_3 \cdots f_n \cdot v_{d,0}$$

Im vorliegenden Fall ergeben sich drei Abhängigkeiten:

$$v_{d} = f_{c}(C) \cdot f_{rf}(rF) \cdot f_{rad}(Q) \cdot v_{d}^{0}$$

C : Eingangskonzentration NO_x
rF : relative Feuchte
Q : UV-A Strahlung

Parametrisierung nach Dyckerhoff- Messungen:

$$v_{d} = f_{c}(C) \cdot f_{rf}(rF) \cdot f_{rad}(Q) \cdot v_{d}^{0}$$

mit: $f_c = 5,880 - 0,747 \ln(C)$

$$f_{rf} = 4,383 - 0,856 \ln (rF)$$

 $f_{rad} = 0,011 + 0,18Q - 0,008Q^2$

Agenda

Einführung

- Experimentelle Untersuchungen
- Numerische Modellierung mit ENVI-met
- Exemplarische Simulationsrechnungen
- Zusammenfassung und Ausblick

Beispielergebnisse

Test:

Nord-Süd ausgerichtete Straße, Höhe-Breite 20 m : 20 m, H-B-Verhältnis 1

- DTV 60.000 Kfz/d, 4 Fahrspuren -

Beispielergebnisse

Szenario 1: Photokatalytisch aktive Fassaden (cyan)

Beispiel: Bodennahe NO_x Konzentrationen

Anströmung Ost (90°), 09:00 Uhr, OHNE aktive Fassaden

Beispiel: NO_x Konzentrationen

Anströmung Ost (90°), 09:00 Uhr, Differenz MIT aktiven Fassaden

Beispiel: NO_x Fluss an Fassaden

Anströmung Ost (90°), 09:00 Uhr

Beispiel: Zusammenfassung Simulationen aktive Fassaden

Maximaler Rückgang der NO_x, Konzentrationen bei photokatalytisch aktiven Fassaden

H/B 1.0 (Gebäudehöhe 20 m), aktive Fassaden							
Windrichtung (Grad)	Uhrzeit	Max. Reduzierung absolut (µg/m³)	Max. Reduzierung relativ (%)				
	09:00	7,46	9,75				
90 (senkrecht)	12:00	2,57	5,11				
	16:00	5,63	7,99				
	09:00	3,32	6,42				
135 (diagonal)	12:00	1,32	4,55				
	16:00	3,06	6,18				
	09:00	3,92	3,92				
180 (parallel)	12:00	1,85	1,85				
	16:00	4,06	4,06				

Beispiel: Zusammenfassung Simulationen aktive Fassaden + aktiver Straßenbelag

Maximaler Rückgang der NO_x Konzentrationen bei photokatalytisch aktiven

Fassaden und aktivem Straßenbelag

H/B 1.0 (Gebäudehöhe 20 m), aktive Fassaden+ Straßenbelag							
Windrichtung (Grad)	Uhrzeit	Max. Reduzierung absolut (µg/m³)	Max. Reduzierung relativ (%)				
	09:00	9,78	12,94				
90 (senkrecht)	12:00	6,04	13,33				
	16:00	5,96	10,70				
	09:00	4,06	8,63				
135 (diagonal)	12:00	3,53	10,13				
	16:00	3,87	8,51				
	09:00	5,03	8,83				
180 (parallel)	12:00	5,15	11,48				
	16:00	5,36	9,71				

(war 1,84%)

Agenda

Einführung

- Experimentelle Untersuchungen
- Numerische Modellierung mit ENVI-met
- Exemplarische Simulationsrechnungen
- Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

- An photokatalytisch aktivierten Betonoberflächen werden signifikante Mengen NO (NO_x) oxidiert und als Nitrate im Beton gebunden (und bei Regen weggewaschen).
- Testsimulationen mit ENVI-met ergaben folgende Ergebnisse :
 - **Fassadenaktivierung**: Abbau bis 10% d.h. 7,46 μgm⁻³
 - **Fassaden-Bodenaktivierung**: Abbau bis 13% d.h. 9,8 μgm⁻³
 - Wegen der Sonneneinstrahlung erfolgt keine Addition beider Effekte sondern eine komplementäre zeitliche maximale Wirkung.

Forschungsbedarf

- Quantitative Untersuchungen der NO/NO_x-Deposition in Form von Nitraten in die Betonoberfläche
- Wirkungsweise in Schattenbereichen
- Im sichtbaren Bereich wirksame Photokatalysatoren (BMFT HelioClean)
- Langzeitwirkung
- Verbesserung des Kosten-Nutzen-Verhältnisses bei der Herstellung von photokatalytisch aktivierten Betonoberflächen
- Ausweitung des Modells auf NO₂ Abbau

Zusammenfassung und Ausblick

- Simulationsberechnung eignen sich besonders zur Auswahl von geeigneten Flächen und zum Nachweis der nachhaltigen Wirkung von photokatalytisch aktivierten Betonoberflächen
 - Große, weil dann unweltrelevant wirksame Musterflächen sind sehr kostenaufwändig
 - Geeignete Flächen für einen NO_x-Abbau sind aktive Flächen in der Nähe der Schadstoffquelle (Straßenbetone, Gehwege, Oberflächen von Verkehrsbauwerken, untere Fassadenbereiche)

Herzlichen Dank für Ihre Aufmerksamkeit!

(nach Loriot, 1965)

ENVI-met Simulation

