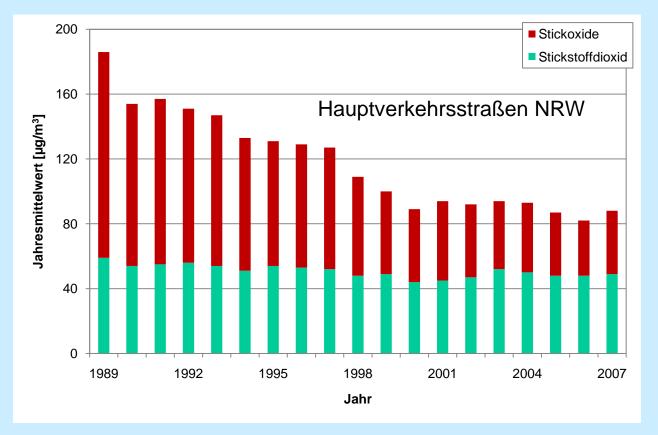
Untersuchung des innerstädtischen "NO₂-Problems" an einer Messstation in Wuppertal

Ralf Kurtenbach



Einführung

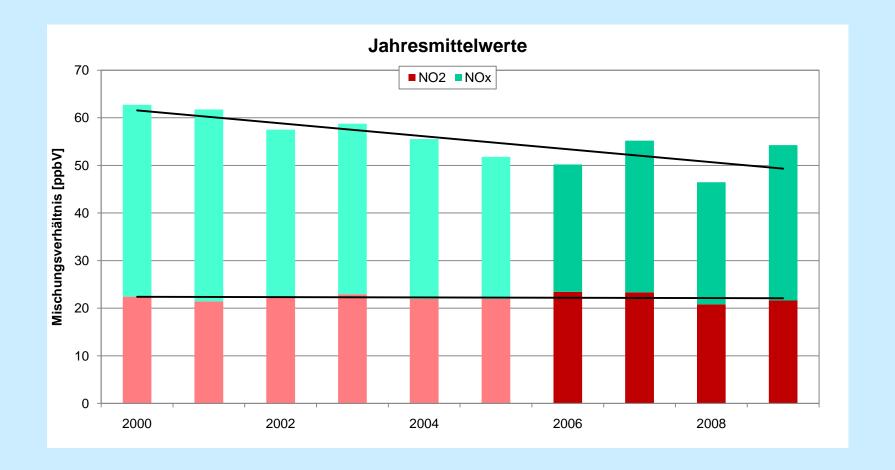
- Stickoxide (NO_x=NO+NO₂) wichtige Substanzklasse
- Stickoxide, insbesondere NO2 und Folgeprodukte (HONO, HNO₃, PAN,...) sind gesundheitsschädlich
- **NO₂:** Ab 2010 niedriger EU-Grenzwert (40 μg/m³)
- Stickoxidemissionen (NO_x=NO+NO₂) zu rund 60% aus dem Straßenverkehr (Umweltbundesamt, UBA)
- Emissionsberechnungen (UBA): Rückgang der NO_x-Emissionen aus dem Straßenverkehr zwischen 1990 und 2006 um 50%

Einführung

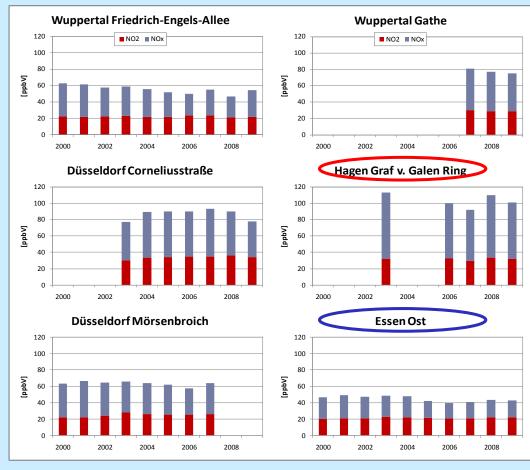
- NO_x-Rückgang wurde auch bei der Immission beobachtet, ist aber zum Stillstand gekommen
- O NO₂-Immission zeigt diesen Trend aber nicht, warum?

Einführung

- Im Jahr 2004 waren 50% der Bevölkerung an sehr stark befahrenen Straßen in europäischen Städten einer weit höher NO₂-Belastung (40 μg/m³) ausgesetzt (European **Environmental Agency**)
- O NO₂ wird primär emittiert (Straßenverkehr), aber auch sekundär in der Atmosphäre aus NO (Straßenverkehr) gebildet: NO + $O_3 \rightarrow NO_2 + O_2$
- O Beurteilung der Effizienz von Maßnahmen zur NO₂-Reduktion nur möglich, wenn der Anteil primäres und sekundäres NO2 bekannt sind
- → Beobachtung des NO_x- und NO₂-Trends und Bestimmung des primären und sekundären NO₂-Anteils

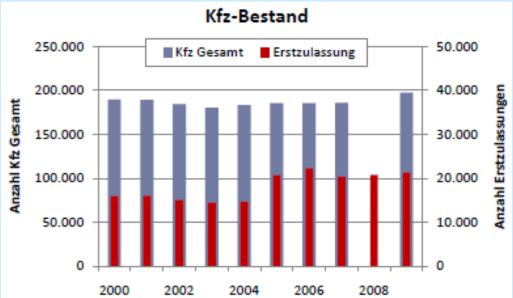


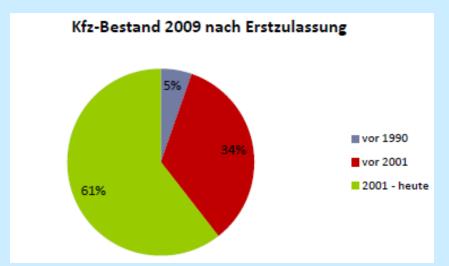
Seit 2006 Immissionsmessungen von NO, NO₂ und O₃ in Wuppertal durch die BUW in Zusammenarbeit mit dem LANUV-NRW



Gleicher Trend wie an anderen Messstationen

Vergleich mit anderen Messstationen in NRW:

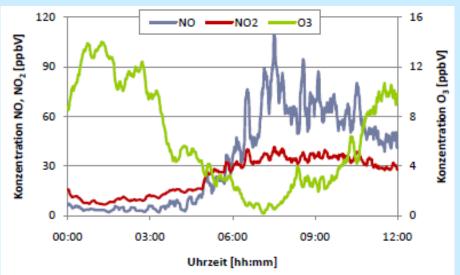

- O NO₂-Konzentration in allen dargestellten Städten oberhalb von 20 ppbV (40 μg/m³)
- O Düsseldorf und Hagen: über 30 ppbV
- Starke Unterschiede bezüglich der NO-Konzentration
- In Hagen 4 x mehr NO als in Essen (Verkehrsbelastung)
- NO₂-Konzentration nicht ausschließlich von Verkehrsaufkommen abhängig
- → Beeinflussung des NO₂-Gehalts durch andere Faktoren

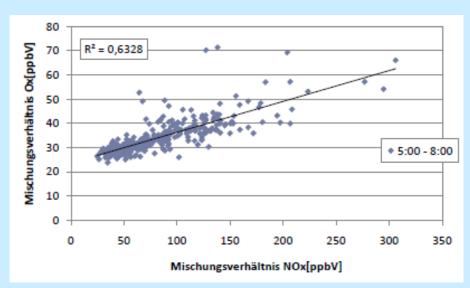


Einfluss des Kfz-Bestands auf die Immissionswerte:

- Kfz-Bestand nahezu unverändert seit 2000
- Zunahme der Erstzulassung
- 10% aller Kfz wurden im Jahr 2009 zugelassen ("Umweltbzw. Abwrackprämie")
- mehr neue Kfz mit geringerem NO_x-bzw. NO₂-Ausstoß (z.B. DeNOx-Katalysatoren)
- NO₂-Konzentration seit 2000 nicht gesunken
- Immissionswerte nicht linear mit der Kfz-Emission gekoppelt

Kolloquium "Luftqualität an Straßen" am 30./31. März 2011 in Bergisch Gladbach


- O Bestimmung der direkt (primär) emittierten und indirekt (sekundär) gebildeten NO₂-Menge
- Messung des direkt emittierten NO₂ an der Messstation nicht möglich, da auch sekundäres NO₂ (Photochemie) mitbestimmt wird:


NO + O₃; (RO₂)
$$\rightarrow$$
 NO₂ + O₂; (RO)
NO₂ + Licht + O₂ \rightarrow NO + O₃ ohne RO₂: "Leigthon"

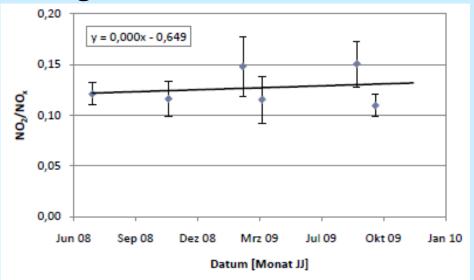
- O Keine RO_2 -Chemie; d. h. O_3 -Hintergrund (HG) konstant: $Ox = (NO_2/NO_x)_{direkt} * NO_x + O_3 (HG)$; mit $Ox = NO_2 + O_3$
- O Auftragung von Ox gegen NO_x
- O gute Korrelation bei hoher Variation in NO_x

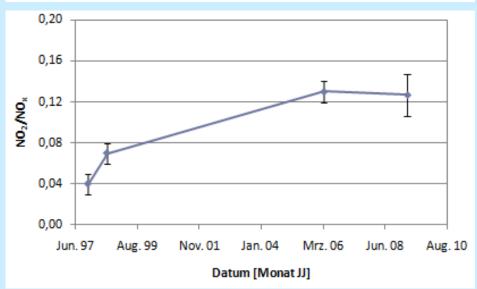
- Annahmen: O₃ (HG) konstant, hohe NO_x-Variation sind zur morgendlichen "Rush-Hour" (5:00 – 8:00 Uhr) erfüllt
- Starke Antikorrelation f
 ür NO und O₃
- Schnelle sekundäre NO₂-Bildung
- O Ox vs NO_x
- \rightarrow (NO₂/NO_x)_{direkt} = 0,12 ± 0,03;
- d. h.12 % des gemessenen NO_x werden direkt als NO₂ emittiert

Kolloquium "Luftqualität an Straßen" am 30./31. März 2011 in Bergisch Gladbach

- (NO₂/NO_x)_{direkt} Trend für 2008 bis 2009
- Geringer Anstieg, im Mittel $(NO_2/NO_x)_{direkt} = 0.13 \pm 0.02$
- Vergleich mit anderen Messungen in Wuppertal

1997: 0.04 ± 0.01


1998: 0.07 ± 0.01

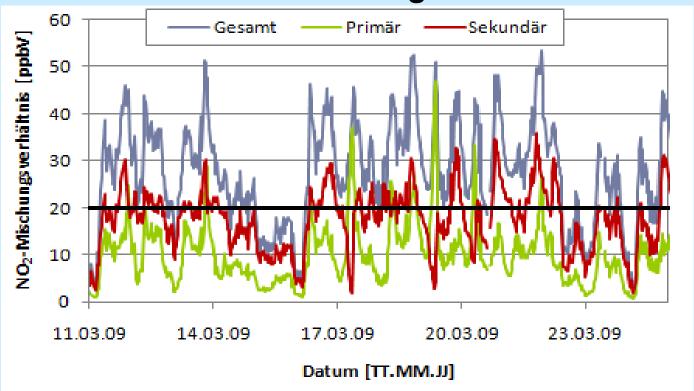

2006: 0.13 ± 0.01

 $2008 - 2009: 0.13 \pm 0.02$

- Starker Anstieg seit 1997
- Einführung des Oxi-Kat; d. h. Reduzierung der VOC- und "Partikel"-Emission
- Erhöhung der NO₂-Emission; (NO₂/NO_x)_{direkt} - Verhältnis

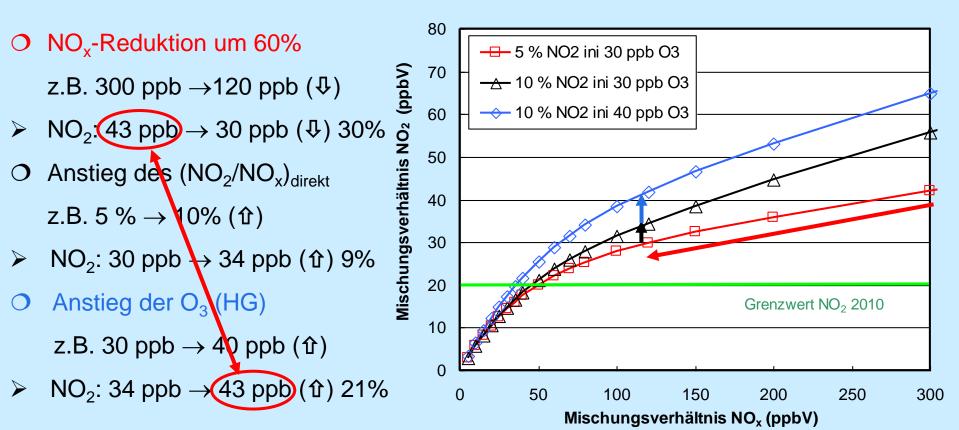
Ergebnisse und Diskussion

Kolloquium "Luftqualität an Straßen" am 30./31. März 2011 in Bergisch Gladbach


- Starker Anstieg des (NO₂/NO_x)_{direkt} bei gesunkenem NO_{x}
- Ein Grund für stagnierende NO₂-Immissionswerte
- Ubereinstimmung mit Rabl und Scholz (2005, Baden-Württemberg; Palgren (2007, Kopenhagen); Air Quality Expert Group (2007, London) und Keuken (2009, Rotterdam)
- Reduzierung des (NO₂/NO_x)_{direkt} ausreichend für die Einhaltung des NO₂-Grenzwertes?
- Berechnung des primär und sekundären NO₂-Menge mit Hilfe des (NO₂/NO_x)_{direkt}

Datum	NO ₂ Gesamt	Prim. NO ₂	Prim. NO ₂	Sek. NO ₂	Sek. NO ₂
	[ppbV]	[ppbV]	[%]	[ppbV]	[%]
Juli 08	18	5	28	13	72
November 08	17	7	40	10	60
März 09	25	9	36	16	64
April 09	26	6	23	20	77
September 09	27	9	33	18	67
Oktober 09	22	7	32	15	68

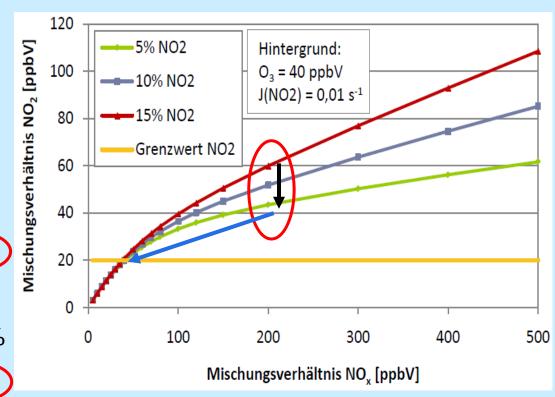
- Hoher sekundärer Anteil (68 ± 6 %) und niedriger primärer Anteil (32 ± 6 %)
- Vergleich mit anderen Städten; z. B. Hagen, Graf-von-Galen-Ring (73 \pm 12 % sekundär; 27 \pm 12 % primär) sowie Stuttgart (50 sekundär; 50 % primär)


- O Senkung des primären Anteil auf 0% nicht ausreichend zur Einhaltung des NO₂-Grenzwertes (z. B. Wuppertal)
- Sekundärer Anteil maßgebend für eine effiziente NO₂-Reduzierung (z. B. Wuppertal)

- Erklärung für den beobachten NO₂-Trend (NO₂→NO₂Ψ)?
- Ja, durch einfache Modellrechnung:

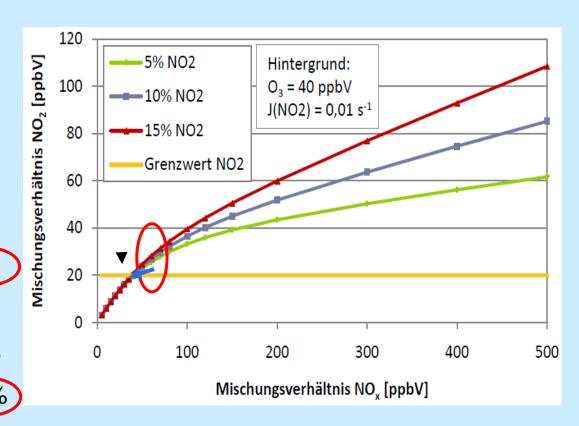
Leigthon-Gleichgewicht ohne RO₂-Chemie, NO₂-Photolyse von 0,01 s⁻¹ bei Sonnenhöchststand

- Erklärung für den beobachten NO_2 -Trend $(NO_2 \rightarrow NO_x \Psi)$?
- Ja, durch einfache Modellrechnung:


Kolloquium "Luftqualität an Straßen" am 30./31. März 2011 in Bergisch Gladbach

- Allg. Aussage über effiziente NO₂-Reduzierung:
- $(NO_2/NO_x)_{direkt} \Psi oder NO_x \Psi ?$

O Allg. Aussage über effiziente NO₂-Reduzierung:


- \odot Hohes NO_x und NO_2
 - z.B. 200 ppb NO_x; 60 ppb NO₂
- O Reduktion des $(NO_2/NO_x)_{direkt}$ z.B. 15% → 5% (\$\Pi\$)
- NO₂: 60 ppb \rightarrow 44 ppb (\P) 26%
- O Reduktion des NO_x
 - z.B. 200 ppb \rightarrow 40 ppb (\clubsuit) 80%
- NO₂: 44 ppb → 20 ppb (\P) 40%

O Allg. Aussage über effiziente NO₂-Reduzierung:

- Niedriges NO_x und NO₂
 z.B. 70 ppb NO_x; 30 ppb NO₂
- O Reduktion des $(NO_2/NO_x)_{direkt}$ z.B. 15% → 5% (\$\Pi\$)
- NO₂: 30 ppb → 28 ppb ($\sqrt[4]{7}$ %
- O Reduktion des NO_x
 - z.B. 70 ppb \rightarrow 40 ppb (\P) 43%
- NO₂: 28 ppb → 20 ppb (\P) 26%

 $O_3 \sim 40 \text{ ppb} \rightarrow \text{wenn NO}_x > O_3 \rightarrow \text{nachts ca. 40 ppb NO}_2$

Kolloquium "Luftqualität an Straßen" am 30./31. März 2011 in Bergisch Gladbach

Zusammenfassung

- Trend der stagnierenden NO₂-Immissionswerte im Zeitraum 2006 2009 setzt sich fort
- O Im Zeitraum 2006 2009 durchschnittliches $(NO_2/NO_x)_{direkt}$ von 0,13 ± 0,02
- O Anstieg (NO₂/NO_x)_{direkt} um 9% seit 1997
- → Einführung des Oxi-Kat
- Starker Anstieg des (NO₂/NO_x)_{direkt} bei gesunkenem NO_x
- → Ein Grund für stagnierende NO₂-Immissionswerte

Zusammenfassung

- Wuppertal: Hoher sekundärer NO_2 -Anteil (68 ± 6 %) und niedriger primärer NO_2 -Anteil (32 ± 6 %), Vergleichbar mit anderen Studien
- Senkung des primären Anteil auf 0% nicht ausreichend zur Einhaltung des NO₂-Grenzwertes
- Sekundärer Anteil maßgebend für eine effiziente NO₂-Reduzierung (NO₂-Grenzwertes)
- Erklärung des NO₂-Trend (NO₂→NO_x◆) und Aussage über effiziente NO2-Reduzierung durch einfache Modellrechnung

Zusammenfassung

- Hohe NO_x- und NO₂-Werte (Stuttgart):
- Deutliche NO_x (EURO 5 位; EURO 6) als auch (NO₂/NO_x)_{direkt} -Reduzierung sinnvoll und notwendig
- Niedrige NO_x- und NO₂-Werte (Wuppertal):
- Nur deutliche NO_x-Reduzierung (EURO 5 位; EURO 6) sinnvoll und notwendig

Danksagung

Mitarbeiter der BUW: V. Elsner, J. Kleffmann und P. Wiesen und dem LANUV: P. Bruckmann

BERGISCHE UNIVERSITÄT WUPPERTAL

Kolloquium "Luftqualität an Straßen" am 30./31. März 2011 in Bergisch Gladbach